If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+128t=-30
We move all terms to the left:
-16t^2+128t-(-30)=0
We add all the numbers together, and all the variables
-16t^2+128t+30=0
a = -16; b = 128; c = +30;
Δ = b2-4ac
Δ = 1282-4·(-16)·30
Δ = 18304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{18304}=\sqrt{64*286}=\sqrt{64}*\sqrt{286}=8\sqrt{286}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(128)-8\sqrt{286}}{2*-16}=\frac{-128-8\sqrt{286}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(128)+8\sqrt{286}}{2*-16}=\frac{-128+8\sqrt{286}}{-32} $
| -14=6+4d | | 3^(x)=12 | | 17r-11=16r-7 | | 2x^2-8x+37=0 | | 3+4x=2x+3+2x | | 2g^2-15g+7=0 | | 2x^2-8x+21=16 | | 16=1-5p | | 5n+47=12n | | 2x+22=4(x+9) | | -10=-10+4t | | (2x-4)+(2x+3)=43 | | 10r-5r-2r+r=20 | | 3x-6=-x+4 | | (3t+1)/4=3/4-5 | | 2=4-s/3 | | 6x*5=0 | | 3/5x+4/9=2/9 | | -20=-10(y+12) | | N+6(n-5)=5 | | -3=-6+k/3 | | 4d-20=2d-4 | | 7d+6d-8d=10 | | 7n–6=15. | | 5^1/2x+4=1/5 | | -(x/6)+5+3x=2(x-6)+4 | | 12x-18=13x=18 | | 4c–11+11=5c+7 | | k-k+3k=18 | | -9(a-3)=54 | | 3+25a=15a+11 | | 2=-3+k/2 |